Centrifugal effects in rotating convection: axisymmetric states and three-dimensional instabilities
نویسندگان
چکیده
Rotating convection is analysed numerically in a cylinder of aspect ratio one, for Prandtl number about 7. Traditionally, the problem has been studied within the Boussinesq approximation with density variation only incorporated in the gravitational buoyancy term and not in the centrifugal buoyancy term. In that limit, the governing equations admit a trivial conduction solution. However, the centrifugal buoyancy changes the problem in a fundamental manner, driving a large-scale circulation in which cool denser fluid is centrifuged radially outward and warm less-dense fluid is centrifuged radially inward, and so there is no trivial conduction state. For small Froude numbers, the transition to three-dimensional flow occurs for Rayleigh number R≈ 7.5× 10. For Froude numbers larger than 0.4, the centrifugal buoyancy stabilizes the axisymmetric large-scale circulation flow in the parameter range explored (up to R=3.5× 10). At intermediate Froude numbers, the transition to three-dimensional flow is via four different Hopf bifurcations, resulting in different coexisting branches of three-dimensional solutions. How the centrifugal and the gravitational buoyancies interact and compete, and the manner in which the flow becomes three-dimensional is different along each branch. The centrifugal buoyancy, even for relatively small Froude numbers, leads to quantitative and qualitative changes in the flow dynamics.
منابع مشابه
Centrifugal effects in rotating convection: nonlinear dynamics
Rotating convection in cylindrical containers is a canonical problem in fluid dynamics, in which a variety of simplifying assumptions have been used in order to allow for low-dimensional models or linear stability analysis from trivial basic states. An aspect of the problem that has received only limited attention is the influence of the centrifugal force, because it makes it difficult or even ...
متن کاملThree-dimensional instability and state selection in an oscillatory axisymmetric swirling flow
Previous studies of the flow created inside a cylindrical cavity ~radius R , height H) of fluid by a single rotating end wall have shown that over a range of cylinder aspect ratios 1.6&H/R&2.8, the first unsteady flows to bifurcate with increasing Reynolds number retain axisymmetry, and subsequent bifurcations break axisymmetry to give solutions with modulated rotating wave ~MRW! states. The un...
متن کاملTravelling circular waves in axisymmetric rotating convection
Rayleigh–Bénard convection in a finite rotating cylinder of moderate aspect ratio (radius four times the depth) is investigated numerically for a fluid of Prandtl number equal to 7 (corresponding essentially to water). We consider the effects of rotation from both the Coriolis force and the centrifugal force and find that the centrifugal force plays a significant dynamic role. In this initial s...
متن کاملMagneto-Thermo-Elastic Stresses and Perturbation of Magnetic Field Vector in a Thin Functionally Graded Rotating Disk
In this paper, a semi-analytical solution for magneto-thermo-elastic problem in an axisymmetric functionally graded (FG) hollow rotating disk with constant thickness placed in uniform magnetic and thermal fields with heat convection from disk’s surfaces is presented. Solution for stresses and perturbation of magnetic field vector in a thin FG rotating disk is determined using infinitesimal theo...
متن کاملA Three-dimensional Spherical Nonlinear Interface Dynamo
A fully three-dimensional, nonlinear, time-dependent spherical interface dynamo is investigated using a finite-element method based on the three-dimensional tetrahedralization of the spherical system. The spherical interface dynamo model consists of four zones: an electrically conducting and uniformly rotating core, a thin differentially rotating tachocline, a uniformly rotating turbulent conve...
متن کامل